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Abstract—This paper derives a bisection algorithm for com- w z
puting the frequency response gain of sampled-data systems with p
their intersample behavior taken into account. The properties of U Yy

the infinite-dimensional congruent transformation (i.e., the Schur
complement arguments and the Sylvester law of inertia) play a key
role in the derivation. Specifically, it is highlighted that counting
up the numbers of the negative eigenvalues of self-adjoint opera-
tors is quite important for the computation of the frequency re- H@- ¥ 18
sponse gain. This contrasts with the well-known arguments on the
related issue of the sampled-datdd ., problem, where the key role
is played by the positivity of operators and the loop-shifting tech- Fig. 1. Sampled-data control system.
nigue. The effectiveness of the derived algorithm is demonstrated
through a numerical example.

The frequency response of sampled-data systems is an impor-
Index Terms—Bisection algorithm, frequency response gain, nu- tant notion as well as a useful tool, since it has close relation-
merical computation, sampled-data systems, Schur complement ships, e.g., to thél, andH... problems of sampled-data systems
arguments. [4]-[6], [11], [16], [18]-[20], [28], [29], [31], the robust stability
problem against LTI perturbations [8], [12], [23], and the digital
|. INTRODUCTION redesign of continuous-time controllers [25]. However, the com-

HE widespread use of digital controllers has stimulatedtation of the frequency response gain of sampled-data systems

modern treatment of sampled-data systems, in Whigﬁrresponds to that of the norm of an infinite-dimensional op-

we can take into account their intersample behavior directwator’ anq IS a_nontrlwal matter.

and exactly (see, e.g., [6] for an overview). Among importa Regarding th|s tough problem, Yama”f“’to and Khargoneka_r
landmarks in the recent development of modern sampled-drﬂi% ] gave a quite nea_t closgd-form solution based on a certain
control theory is the study on the frequency response &t ependent generalized eigenvalue problem. To compute the

sampled-data systems. What distinguishes this notion fr [fjauency response gain numerically based on this result, how-

the classical frequency response of discrete-time systemsngr’ we need to carry out a one-dimensional search with re-

that the new notion is defined between the continuous-tinf8@€Ct 17, and it involves a numerically undesirable process of

input w and the continuous-time output of the internally zero/nonzero judgment (see Section IV-A). Also, it is generally

stable sampled-data system as shown in Fig. 1, consistingt'me'consum'ng'
the continuous-time planP, the discrete-time controlle®, There are a few other methods used to compute the frequency

the hold deviceg{ and the samplef with sampling periodh. response gain approximately [1], [.15]' [33], .bUt they require to
Such a notion has been introduced with the lifting approa mpute the norm of a huge matrix as we increase the degree

[32], and independently with the FR-operator approach [1 the approximation, which is undesirable from the viewpoint

and it is known that the definitions in these two approaches %}computational load and numerical reliability. A different type
essentially equivalent [30] of efficient approximation method to compute the frequency re-

sponse gain was given recently in [14]. This method has advan-
tages in the above viewpoint, and seems to give satisfactorily
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highly desirable from the viewpoint of computational load antion algorithm for the computation of its gain. The state-space
numerical reliability. However, the previous attempts [13], [LS5rmulas for the computations involved in the algorithm are
to derive such an algorithm have been successful only partiadliso given there. Next, in Section 1V, we study some related
as explained later in this Introduction, and deriving a completesues. Namely, in Section IV-A, we discuss some important
bisection algorithm still remains one of the most important opémplications of our arguments in Section |Ill, and clarify the
problems in the modern sampled-data control theory. Now, theationship of the proposed bisection algorithm to one-dimen-
purpose of this paper is to derive such an algorithm, and demaivnal search algorithms, especially the existing one derived by
strate its effectiveness through a numerical example. Yamamoto and Khargonekar [32]. Next, in Section 1V-B, we
Essentially, deriving a bisection algorithm boils down tstudy the relationship to the task of solving the sampled-data
deciding whether or not the frequency response gain at edéh, problem. The arguments there provide a clearer link be-
frequency is smaller than a given positive numbein this tween this task and the derivation of the bisection algorithm.
paper, we exploit some useful properties of the infinite-dimein Section IV-C, we give some remarks about the parallel ar-
sional congruent transformation (i.e., the Schur complemaniments with the FR-operator approach, and show that we can
arguments and the Sylvester law of inertia) to reduce thierive a different but equally useful bisection algorithm for the
binary decision into counting up the number of the negatimputation of the frequency response gain. In Section IV-D,
eigenvalues of a certain block-diagonal self-adjoint operatae give some possible applications of our infinite-dimensional
consisting of twoy-dependent blocks: a finite-dimensional maeongruent transformation approach developed in this paper. Fi-
trix block and an infinite-dimensional operator block. Here, theally, in Section V, we study a numerical example, and demon-
former can be computed with the finite-dimensional state-spasteate the effectiveness of the proposed bisection algorithms.
matrices of the sampled-data system by an exponentiation for-
mula, so that its negative eigenvalues are easy to count. On the Il. PRELIMINARIES
other hand, counting up the number of the negative eigenvalue
of the latter block (i.e., the infinite-dimensional operator block
amounts to counting up the number of the singular values
D larger thany whereD denotes the direct feedthrough ternf2!N of sampled-data syst(_ams. . .
in the lifted representation of the sampled-data system. TheThe space of square mtegrable func'tlons over the t_|me
computation of these singular values could be carried out w ferval [0, h) equipped with 'the usual inner product wil
an existing method [5], but this paper further elaborates denot(i(lj pyLQ[O’ h). The direct sum ofn suc_:h spaces,
deriving a much more reliable method (actually, a bisecti _2_[0’ )™, is _also d_enoted by [0, h) f(.)r notational sim-
algorithm) for their computation, again through essentially t icity. The nn-d|m.en3|onal complex Euclidean saace will be
same technique with the infinite-dimensional congruent tran enoted byC™. Itis well-known thatl»[0, ») andC™ as well

formation. Thus, we can readily obtain a bisection algorithr"f\S their direct sum are separable Hilbert spaces.Mdebe a

for the computation of the frequency response gain. _separable Hilbert space. Fory € M, their _inner product

As seen from the above, the arguments in this paper contr. Sﬁenoted b_y(_a:, u)s an_d the norm ok € M IS denoted by
with the well-known arguments on the related issue of the sami="" The adjoint of a linear operatd® on A is de”gted by
pled-dataH ., problem [4], where the positivity of operators ang™ ’ gnd the transpose (.)f a matri is denoted byP>” . The
the loop-shifting technique play a key role. Instead, in this papéQ,em'ty. qperator or matrix is denoteq by The class of linear
a key role is played by a more general idea of the numbers of %lf—adjm_nt_ compact operators Om N dent_)ted byw.. For
negative eigenvalues of operators, and the properties of the: €W, itis weII-knowr_w [2_2] that i) ev_ery\ in the spe<_:trum
finite-dimensional congruent transformation are the crucial tot & real __number,_ and is in fact an eigenvalue prov_ldgd_ that
for the developments. Because of this difference in the und _# 0, 1) the eigenvalues are at most countably infiriite,

lying tools, we do not need to make the assumptionydhat and iii). 0 is the only possible point of their accumulation.
ying PHom Jor a linear compact operatd on M, o;(X) denotes the

v > [|D||, which corresponds to the positivity condition of a . oo
certain operator and was made in the previous attempt towépa largest ;lngular valu_e oK, which is given by the square
ot of theith largest eigenvalue aK*X. The class of the

a bisection algorithm [15]—since the frequency response g ; -
can actually be smaller thg{||, such an assumption is notoperators of the form/ — X (X € W, visapositive number)
appropriate and, hence, the previous attempt was only partia{ﬁ en.ot-ed bW Npte that every linear self-adjoint operator
successful. The other attempt given in [13] was not completeq a f|'n|te-d|menS|onaI Sp"?‘w’ belpngs taV, even with a
successful, either, since it made a strong assumptiaf,dyut prescribed value of, r_;md this faCt.Wl." t?e_ use_d thrOl_Jghout the
er. If the underlying spac&1 is infinite-dimensional, on
t

the bisection algorithm derived in this paper can be regarded
! I gor vedinthis pap g e other hand, everY € A can be expressed uniquely as

a natural extension to it. — o] — X and thus i ¢ but has th :
This paper is organized as follows. In Section II, we gi\ﬁ = 74 — A&, and us IS noncompact, but has the property

the notation used in this paper and provide some useful fi at ') everyA in thg spectrum is a real number, and is in fact
damental results regarding the infinite-dimensional congrue%'? e|g::n\_/_alue gr_(_)_v’ldtid that gé ’V'f ,_Oilso, I r:_as th_e ab0\|/e

transformation of operators. Section Il constitutes the mafiOPery i), an "')_ 1€ number ot 1S negative eigenvalues
part of the paper, where we first review the notion of the S well as the multiplicity of the zero eigenvalue are finite.

quency response of SampleQ'data Sysu?ms based on the ll'mnghroughout the paper, the eigenvalues are counted according to their multi-
approach, and then we provide our main results on the biselxities.

?n this section, we give the notation used in this paper and pre-
gre some useful results for computing the frequency response
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ForY € N, N(Y) denotes the pair of intege(s, n) where According to the lifting theory [32], the closed-loop transfer
z andn are the multiplicity of the zero eigenvalue and theperator of the sampled-data system is given by

number of the negative eigenvalues ¥, respectively. We R

define(z, ny) + (22, n2) := (21 + 22, n1 +n2), and it readily G(z):=C(zI — A)'B+D (5)
follows thatN([ 5 ¢/ 1) = N(Y1) + N(Y) if [ S ¢ ] € V.

ForY € AN, Y is said to be positive definite [22] (and Wewhere

denoteY > O)if (Yx, z) > 0 for every nonzera: € M. [ A4+ BapDyCyo BapCly

Now, we begin with the following lemmawhichis an operato(4 T By Cys Ay
version of the Sylvester law of inertia under congruent transfor- r I I O O O
mations. = [A¢ Ba]

R R . O D g CdQ C\Ij B A\ CdQ A\Ij

Lemma 1: Suppose tha¥ € A and thatX is an invertible - ©)
operator onM. If X*YX € N, thenN(Y) = N(X*YX). ‘B 7

From this lemma, the following lemma is immediate, whichB := Ol} = [O} B, @)

is an operator version of the Schur complement arguments.
Lemma 2: Suppose thal2. 5] € A and suppose th@® € := [Cy + D1,DyCyr D120y ]
andR are invertible when their inverses are referred to. Then (C, Du] { I 19) }
= 1 12

(8)
N([Q STy _y([Q-SR's" O DyCar Cy
s* R|/)™ O R D =Dy, o

:ng R—sgq—lsD' @

h
A, = Al B = A(h—o’)B H d

We also have the following lemmas. 4= “ /0 ¢ 2H(0)do

Lemma 3: Suppos€Y € A. Then,Y > O if and only if all Cy2 :=Cs (20)
eigenvalues oY are positive [i.e.N(Y) = (0, 0)]. h Alh—o) .

Lemma 4:Let X = [ 9 ], whereA is ann-dimensional ~ Bi:w(-) = /0 ¢ Biw(o)do: L,[0, h) — C* (11)
invertible matrix. ThenN(X) = (0, n). ) A6 s

The proofs of the above lemmas are given in the Appendix. Ci:z = Cre™a: C° = L[0, h) (12)

6
Di:w()—Cy / e~ Blw(o)do + Dyyw(6):

I1l. BISECTIONALGORITHM FOR COMPUTING THE FREQUENCY 0
RESPONSEGAIN L>[0, h) — L»[0, h) (13)
¢
A. Frequency Response Gain Dio: u — Cy / e~ By H(o)dow + Dy2 H(8)u:
In this section, we first review the notion of the frequency re- o 0_> L2[0, h) (14)

sponse gain of the sampled-data system shown in Fig. 1 based
on the IIftlng approach [32] Herel? is the continuous-time The frequency response gain at angu|ar freque@cjs

plant given by defined as the norm of#(c’*") induced onLs[0, h), i.e.,
) |G(e?#™)|| [32]. Without loss of generality, we may con-
@(t) = Az(t) + Biw(t) + Bau(t) fine the range ofp to —x/h < ¢ < w/h, and we have
2(t) = Cra(t) + Diyw(t) + Diou(t) |G(e?™)|| = [|G(e7#M)]|. In this paper, we are interested in
y(t) = Cox(t) @) checking if
o jeh
andV is the discrete-time controller given by HG(CJ? )| <~ (15)

. for agiven numbet, so that we can obtain a bisection algorithm
¢k + 1 = AvC[R] + Ben[k] for the computation of the frequency response gj&ic’+")]|.
plk] = Cu&lk] + Dynlk]. @) Regarding the problem of checking whether or not (15) is

) ) ) true, we may introduce the following assumption without loss
They are connected with the generalized Hgldith hold func- - of generality.

tion H(6) and the ideal samplet, which work according tothe  Assumption 1D;; = O: This is becaus#G(e/#")|| is not

equations smaller than||D,.]| [32], and, hence, we may always assume
v > ||D11]|. Hence, an appropriaté-unitary transformation
H:u(kh+60) =H(0)pk],  (0<6<h) can always reduce the problem of checking (15) to that of
S:nlk] =y(kh) (4) checking an inequality of the same form but with; = 0

[13]. Assumption 1 guarantees the compactness of the operator
where i is the sampling period. In the followinglim(z), D, and, hence, that @#(c’#") [32]. This enables us to employ
dim(¢), dim(w) anddim(y) are denoted by, ng, m andl, the results of the preceding section. Note that /)| is
respectively. equal to the maximum singular valag(G(c%™)).
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B. Main Results 3)
Now, we proceed to the topic of deriving a bisection algo- NI —D
rithm. In the following,¢ stands fore’¢" for a given value of N <[—D oI D +NEF(C, 7)) =(0,n)  (23)

¢, and we assume thagt> 0 does not coincide with a singular
value of D. Since only 0 is the accumulation point of the sin- 4)
gular values ofD, this assumption will be satisfied for almost B
every-y. N(F(C’ 7)) - (0’ n— ]‘/)' (24)
Regarding (15), we can readily show that this condition is gy Theorem 1, whether or not the condition (15) holds can
equivalent to the following condition by using the Schur comse checked by counting up the number of the singular values

plement arguments (Lemma 2). of D larger thany, the number of the negative eigenvalues of
I _C the finite-dimensional matrixd'(¢, +), and the multiplicity of
~G(0) ~T . the zero eigenvalue df({, v). As for the computation of the

first number, we could employ the method of [5] to compute
By substituting (5) into (16), the above condition can be restatétk singular values aP. Alternatively, we can apply the bisec-

asK(¢, v) > O where tion algorithm developed in Section 11I-D. As for the second and
. . third numbers, the computation 6% ¢, ) is described in Sec-

K, v) = [ ’7,.‘,7) _2; } - [% g} tion 11I-C. Hence, we can readily obtain a complete bisection
N v algorithm, as opposed to that in [15], from the condition (23).

y { 0 I - A} -t {B O} (17) Before closing this subsection, let us note that Theorem 1
¢l — A o o cr can be extended to such a result that can be used to compute
o ) other singular values (not only the maximum singular value)
Here, note that/ — A is invertible becaus@’| = 1 and the ¢ oo hjed-data systems via a bisection search. To compute

feedback system is assumed to be internally stable and, hengge singular values of sampled-data systems by a bisection
A is a stability matrix. By this, together with Lemmas 3 and AéearchA algorithm, it is sufficient to know the open interval

we can readily see that the conditiBi{¢, v) > O is equivalent (Uz‘+1(G(C))70i(é(C))) in which a given~ is included.

to the condition Now, suppose that; 1 (G(¢)) < v < a;(G(¢)). We can
K, v) O readily see that this condition is equivalent to the condition
N O (I —A =(0,n) (18) N(X(¢, 7)) = (0,1). Hence, we can readily obtain the
& [C*I Iy O } following result in a similar way to Theorem 1.

Theorem 2:Suppose thaty is not a singular value oD.
wheren denotes the size of the matii4, i.e.,n = n, +n¢. Then, the following four statements are equivalent for all non-
This condition in turn is equivalent to the condition negative integers whereo,(-) is defined to be infinityy is the
size of the square matrid, andv is the number of the singular

NI —D*
N ( [—D NI } ) —(0,n) (19 values ofD larger thany.
0 F(w Y A A
by (17) and Lemma 2, where the finite-dimensional matrix Tig1 (G(C)) <y<o; (G(C))- (25)
F(¢, v) is given by 2
O I—A B O _
e = w0 95416 & NN+ ([0 o) =m0,
v —D*]7 B O (26)
X[—D ’vf} {0 C] 3)
20 N <[jff) ;?D +N(F(C, 7)) = (0, n+4). (27)

Summarizing the above, we can obtain the following theorem. 4
. : )
Theorem 1:Suppose thaty is not a singular value oD.
Then, the following four statements are equivalent, where N(F(¢, ) = (0, n+1i—v). (28)
the size of the square matri&, andv is the number of the sin-

gular values ofD larger tharny. )
C. Computation ofF'(¢, )

1)
. In this section, we show how to comput&(, ) that is used
G(C)H <7 (21) inthe bisection algorithm. From (6)—~(9), we~have
_ O dd-E| |B O
2) F(<77)_|:<*I—ET O :| |:O OT:|

o CI—A BT 0} (29)

N(K(C,w))+N<[C*I_A* 0 Dz(o,n) (22) XG(fy)[O et
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where isometrically isomorphic. This means that the singular values
of P11 (e’#") and those of1; (j¢) all coincide for eachp, that

OT Aa Baz B, O is, the following relation holds for each and everyy > 0.
BT O O 9] D* N ryI ) _Pll(e )
d2 12 —Pll(ej(’ch) ’YI
71 —D11 i 0 0 _N <[ v —i*(ﬂp)D ' 35
x [_Dn 0 C, D, _PuGie) Al (39)
. O . I Note thatP;; (s) is strictly proper by Assumption 1. This im-
E= |:B\I/Cd2 A‘J b= {O} plies that the elementB; (j¢,,) tend to zero a$m| goes to
infinity. Therefore, we can compute tlexact value®f all the
P I O . . - .
C .= DoCpr Co (30) singular values of’; (j¢) larger thany by computing the sin-

gular values of thdinite-dimensionamatrix
WhenH(6) = Cyet#?By is employed as the hold func- Pri1,,, (J¢)

tion, the abover(y) can be computed by the formula = blockdiag[Pr1 (je—n)s - > Pri(ieo), -y Piliem)]
I 0 0 o1 TIas Do (36)
Gv)y= |0 I 0 I 0 0 larger thany, if M is sufficiently large. One such/ is given as
0 0 BAEIG| [Ty Ta Ty follows, as discussed in [7]. Let
1
_ AT =T
i T I'is 71 o0 o A ,yCl €1
Ap = (37)
x| 0 I 0 01 0. (31 p 1 ;
0 0 I 0 0 By ;BlBl A

The above equation and (32) at the bottom of the page, givgrlld let

formula for the computation af (¢, ~) via matrix exponentia- ~ # = max{[A[: Ais a purely imaginary eigenvalue df, }.
tion. The derivation of the above formula is similar to the argu- (38)

ments in [5], [16], [17], and is omitted. Then, it is enough to takéZ such thatpy, > pande_y <
. . . . . — i, Which follows from the well-known results of [3]. Hence, it
cl?f.DBlsectlon Algorithm for Computing the Singular Values follows that we can obtain the exact value of the right-hand side
_ . _ of (35), and, thus, the left-hand side. On the other hand, using
In this section, we show that the singular value$0£ D11 |Lemma 2, we can obtain (39) at the bottom of the next page,

can also be computed via a bisection search. To show this, i& similar way to the arguments in Section 11I-B, where the
employ a technique similar to that used in Theorems 1 andigite-dimensional matrixi; 1 (/" ~) is given by

together with the FR-operator representatiBn (j¢) of the o O eIk T
open-loop system from to z. Here, P11 (jip) is given by Fii(e¥", ) = [G_MLI 0 } - Gu(v) (40)
Pll(j(p) O Ad Bl O
- . . . . Gu(y) = + X
= blockdiag]. .., Pi1(je—1), Pi1(Jwo), Pu1(je1), -] AT O O Ci
* -1 *
(33) % [ v _D11} [B1 & }
wherePy; (s) = Cy(sI — A)™'B; andg,,, = ¢ + 2mz/h [1]. ~Du A 0 C
The counterpart td’ 1 (j¢) in the lifting approach is given by I O
— I O O
P11(6](’Ch) = Cl(ej(’ChI — Ad)_lBl + Dy, (34) O O
In [30], it has been shown that the frequency response based Do T | | T1r T'i2 - a1
on the lifting approach and that based on the FR-operator are | I 0O o I ’ (41)
[ —AT ¢t —-=CTDCy 0]
Y Y
'y T2 Ty 0 1 ,
- BB A BC 0
Tor Top Ios 0 = exp ~ e H hi. (32)
0 0 Iz O 0 0 A 0
Py Dy Tys Ty , , H
cEBy =CEDLe = CLDL,DCy —AL
L "y "y .



374 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 3, MARCH 2001

Since we already know the value of the left-hand side of gifg;&\/;fues
(35) as mentioned above, we can compute the value of the '
left-hand side of (39) by Lemma 4. Therefore, if we focus on
the right-hand side of (39), by computing the number of the

negative eigenvalues dfy, (¢/*", ), we can obtain the exact / _—
number of the negative eigenvalues of the opera“_t@rl[*];’;l 1. _ - ,
Since this is true for each > 0, we can compute every singular 0G(E)  ouD) oG o)

value of Dy, (=D) via a bisection search with respectiolt is
sufficient to carry out this bisection search at one fixed angular
frequency for whiche?¥*I — A, is invertible, becaus®;; is
independent of.

IV. RELATED ISSUES ANDFURTHER DEVELOPMENTS Fig. 2. The behavior of the eigenvaluesBf¢, 7) (n = 2).

A. One-Dimensional Search Algorithm

In this section, we show that another procedure can be abequality (42) fails for the originat, and this inequality will be
tained from the condition 4) of Theorem 2 for the computatiosatisfied for a larger value of. This implies that the right-hand
of the frequency response gain and the singular valu@s of  side of (28) must become smalleragrosses a singular value

Suppose that is larger than|G(¢)||, so that (25) holds for of D. However, from the above mentioned nonincreasing prop-

¢ = 0. Also suppose that erties of the eigenvalues &f({, +) when decreasing, this can
happen only by a discontinuous jump of some of the eigenvalues
ov+1(D) <7 < ou(D) (42)  of this matrix at a singular value @ (see Fig. 2). To put it

so that there are singular values oD larger thany. Now, as reve_rs.e,.t.he singular va!uesﬁfcan be found, including their

~ decreases, the condition (25) fails foe= 0 eventually when Multiplicities, by observing the place and the number of such
~ crosses the value dﬁ(C)ll, and we will have > 0 instead. kl_nd 0fd|scontlnqou51umps ofthe elgenvalue_s%t’, ~). Th_|s

On the other hand, the value pfremains unchanged as longdVes an alternatlye method fpr th.el computatlon of the singular
as~ remains within the range (42), and, hence, by (28), tf@lues ofD_. For this computation, it is obviously enough to take
number of the negative eigenvaluesiof¢, +) increases as  ONly one fixed valuey (or ). _
crossed|G(¢)]||. This implies that|G(¢)|| can be obtained by The above alternatlv_e _pr_ocedure for the computation of _the
searching for the largest value phcross which the number of frequency response gain is in fact closely_relgted to the one given
the negative eigenvalues &7(¢, ) increases as decreases. Py Yamamoto and Khargonekar [32], which is based on the fol-
[In other WOdeyHé(C)H can be obtained by searching for thdowing pr(_)posmon (adapted and rearranged to fit our_notauon).
largest value ofy that satisfies the conditiatet( F(¢, 7)) = 0. Proposition 1 (Theorem 2 of [32]):Suppose thay is not

See Fig. 2] Fortunately, it readily follows from the structure of Singular value oD. Then, the following two statements are
F(¢, v) as shown in (20) that the eigenvalues of this matrigduivalent: X

are uniformly nonincreasing asdecreases, provided thatis 1) v is a singular value o&(();

within the range of (42) (i.e., provided thatdoes not cross a  2) det((E(v) — A(y)) = 0;

singular value ofD). Therefore, it should be easy to find, in avhere
numerically reliable fashion, the largest valueyacross which

B —1
the number of the negative eigenvaluedt, ) increases as _ I -B <ry_r - lp*p) B*
~ decreases. This gives an alternative method for the computa- E(y) = v
tion of the frequency response gdi&'(¢)|| without a bisection | O A*+C*D(y*] — D*D)~ ' B*

search, which can be carried out without a prior knowledge of - 2 e — 1 g
the singular values dp. A+ B(y*I -D*D)"'D*C O

By the way, suppose thatcrosses one of the singular values A(v) = o (1 1 DD _1C 7
of D before it crossefG(¢)|| as~ decreases. In this case, the . Ll

’YI _Pfl(ej(db) O
N —Pll(Cj(’Ch) ’)/I
0O O Gj(phl — Ad
eieh] — AT o)
|: ’VI _DT1:| O
=N -Dun Ad . (39)

o Fll(ej(;hv ,7)
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Now, letting A, := A + B(v*I — D*D)~'D*C, B, = 3) ForallAy, By, Cy andDy, the matrixA is stable if and
B(yI—(1/~v)D*D) tB* andC., := C*(vI — (1/4)DD*)~1C, only if the matrixA is, where
the condition 2) can be restated as follows.
) B |:Ad + By2DgCyo Bd20\p}
(I—A, —(B, |\ _ ByCus Ay
det <[ o, car—1])=° (43) . [A+ByDyCy ByCy
A= ) . (47)
B\I}CQ A\Ij

On the other hand, our reduced condition given in this subsec-

tion isdet(£'(¢, 7)) = 0, or equivalently Then, P can be used as an equivalent discrete-time system for

solving theH,, control problem of the original sampled-data
det <[ By - AWD —o0. (44) system.
R Theorem 3 can be proved by replacitffv) in (29) with

) ) - _the right-hand side of (46), and tracing the arguments in Sec-
Naturally, it can easily be verified that (43) and (44) are equiYiy, 111-B in the reversed waynutatis mutandisThe impor-

alent. However, the latter has a numerically desirable featytg, e of Theorem 3 lies in that it provides a general class of dis-
that the involved matrixt”(¢, ) is self-adjoint (i.e., Hermi- ¢ ate time systems that can be used for solvingzheproblem
tian). Furthermore, the eigenvalues of the matrix involved hayg sampled-data systems. Indeed, we can verify that both the
numerically _amenable properties as stated above. Namely, Bicrete-time system given by [5] (which we call the B-P type
one-d|men5|on_al search has_ an advantage over that of Bz]ré'&lization) and that by [16] (H-H-Y type) are special examples
that by observing the behavior of all these eigenvalues [rathgrp saiisfying the conditions of the above theorem; we can in-
than only their product, i.e., the determinant in (44)], the frgg et the B-P type realization as the one obtained by solving
quency response gain = ||G(¢)]| can be detected more reli-(46) for > under the constraind,;, = 0, while the H-H-Y type
ably. under the constraind = A; andB, = Bys.

As for the above theorem, it is quite important to note not
B. Relationship to the Solution of Sampled-Data, Problem only its assertion itself but also the following fact: essentially

The exponentiation formula for computing the finite-diment-he same arguments as in the computation of the frequency re-

sional matrixF'(¢, ~), or equivalently, that fo€(~), frequently sponse gain_—i.e., the infinite-_dime_nsional congruent transfqr-
appeared also in the existing researches onHhe control mation techniques developed in this paper—_have been applled
problem of sampled-data systems [5], [16]. This suggestss'é,cceSSf“"Y a_lso tp thH ., control problem. Itis precisely this
strong connection between our study and those existing studfé‘%',nt that distinguishes our approach to g, sampled-data

and we indeed have the following theorem that establishes s&&?trm problem from the cop\{entional gpproach; the Ia.tter.is
a connection. mostly based on the loop-shifting technique [5], [16], which is

Theorem 3: Suppose that the discrete-time systéhgiven suitable only to thed ., control problem and cannot be applied
to the computation of the frequency response gain, in general.

by In other words, the conventional approach with the loop-shifting
N s Aon A technigues cannot provide a unified framework to the two prob-
e+ 1] = Aw ]+ B}w[k] + BQAp[k] lems, in spite of their superficial close relationship. As described
2[k] :lef[k] + D11 w[k] 4+ Di2plk] in the Introduction, this is because the loop-shifting technique
nlk] = Ca@[k] (45) is based on the positivity of a certain operator, and, thus, we
need to assume > ||D|| to apply this technique; even though
satisfies the following three conditions. this assumption causes no loss of generality inAhg control

1) G(~) given by (30) has the following decomposition: problem, the frequency response gain can be smallertBdn
so that we may not assume> || 2| in the computation of the

O Ay Bup B, O frequency response gain. This has peen pre(_:isely the major ob-
A0 O o stacle in deriving a complete bisection algorithm for the com-
d T 1 putation of the frequency response gain, and, hence, in estab-

BL O O O Di, lishing a unified framework for the two related problems with
{ ~I _Di«l}—l {B’{ O O } the loop-shifting approach.
X
O_Dj Bﬁﬂ B O 001 D12 C. Bisection Algorithm Based on the FR-Operator
- : : AT In this section, we give an alternative bisection algorithm for
= A O O|+|0 ?1 computing the frequency response gain of sampled-data sys-
BY 0 O O D, tems, which is based on the FR-operator. The FR-operator coun-
[ ~I  —DY } -1 [E}IT O O } o) terpart toG(e?#") is G(j¢) [11], which is given by
X ~ ~ ~ .
D Al O Ci D

Glie) = Pulie) + %MU‘P)‘P(GW’L)
2) v > o1(D11). x (I — Hgg(ewh)\lf(ej%@h))*iuw) 48)
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I . ] L |: O I — HQQ(Gj(’Ch)\I/(Gj(’Ch):|

P12(j¢71.)f1(j¢71) I- ‘P*(@%}L)HEQ(CM}L) o
. . A 1 P21(j<,0) O
PioH(je) = | Pia(ivo)H (i) -7 [—O \If*(ej@h)PmH*(ﬂp)}
Pra(je1)H(jer) oI P (i) 1
i : | * [—i(ﬂp) oyl }
Po(jo)=[... Pau(jo—1) Pu(ieo) Pu(jer) ...] P " (jo) O
X |: 0 PlgH(j(P)\I/(Gj(’Ch):| . (54)

Here, P,;(s) = Ci(sI — A)™'B; + D;;, Ilss() is the pulse
transfer function ofS Py, (s)H, and H(s) is the transfer func-
tion of the hold device. Note that the way an inverse appearsRemark 1:In Theorem 4, the size of the square matrix
in (48) and that in (5) are parallel. Also note that Assumption £'(y, ) is twice the number of the outputs £%.(s). The dual
guarantees thdt; (j¢) is compact, and so &(;jy). Therefore, form to Theorem 4, in which the size @f(y, v) is twice the

itis possible to derive an FR-operator counterpartto Theorenm@imber of the inputs of%»(s), can be obtained in a similar

in a similar way to the preceding section. way.

Theorem 4:Suppose thaty is not a singular value of From Theorem 4, we can check the condition (49) by (51), so
Pi1(je). Then, the following four statements are equivalenthat we can readily obtain a bisection algorithm for the compu-
where! is the number of the outputs df,»(s), andv the tation of | G(j¢)||(=||G(¢?¥")||). The computation of the first
number of the singular values &%, () larger thany. term on the left-hand side of (51) has already been explained.

1) Here, we show how to compuf&(y, ~). Observe that (54) can

be rewritten as

GG < (49) F( ) o 1 B T o)
2) L8 Y, 7)) = I O O \I/*(ejgph)
Jjooh 1 O
X . (M) [0 \P(GM)} (55)
N(K(p, 7)) +N
%) [ = Thap(eeh)w(eivmypy  VEre ,
x <|: *( _joh * joh :|> (I) Jehy . O HQ?(GJ(;}L)
LT (e 0 ) W= gy 0
=(0,0): .
hl O  PupH'(jy)
3) « [ v —&*(ﬂp)}_l
—Pii(je) vl
v —P1 (i) _ ) Pn(5) 0 N 56
N <|:_&(J<P) —’YI +N(E(<P7 '7)) = (07 l)7 x 19) M(‘WP) (56)
(51) It can be shown thab.,(¢’#*) is the frequency pulse-transfer
function of the discrete-time system given by
CT
4) (I)'yll ‘ _(I)'yll |: 02 :| (I)"/IQ
N E ’ = 07 l— v); (52)
D= 007 %)= [0 6] 0 o| ®
where oT
D21 D01 [ 02 } D20
K(p,7) where
_ |: vI _i*(l<ﬁ):| do11 | ®.1 -
-Gy w i
1 {@*(y«a) } Py | P ]
hl 0 PoH(jp)u(d#h) Sl (58)
y [ ]O y I—H22(th)\lf(6”h)} Ty Ty i IV
I _\P (77 )HE5 (™) L 0 andI';; are given by (32). The derivation of (57) and (58) is
Por(5e) 0 similar to those arguments used in [17], and is omitted. See [17]
X (53)
O \I/*(Cj(’Ch)PlgH*(j(p) for details.
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It would be interesting to observe that the resulting finite-dlemma in the continuous or discrete-time case [24]. Now, it can
mensional matrix'(¢, ) differs from the finite-dimensional readily be seen that (59) is restated as follows:
matrix F'(¢?¢" ~) that we reached in the lifting approach. Com- o oA B
paring both approaches, we can see the following. My — [B* M) i C—Mn } |:M12:| S 0.

* When we use the lifting-based method, it is sufficient to (60)
computer at one angular frequency, since the infinite-diNote that the inverse in (60), which we denote herdiy, is
mensional operataP is independent of. On the other a finite-dimensional matrix, and we can shdWR) = (0, n),
hand, when we use the FR-operator-based method, wReren is the size of the matrixd. Also note that-Mss € N
have to compute- for all angular frequencies at whichby assumption. Therefore, again we can apply a technique sim-
the frequency response gain is computed, since the irifar to that in the preceding sections for reducing the test of the
nite-dimensional operatdPy; (j¢) depends orp. There- condition (60) to a finite-dimensional test. A similar treatment
fore, concerning the computational load for the infinite-diis also suggested in [10] in the context of the study of positive
mensional part, the lifting-based method has an advantagal sampled-data systems [26], [27]. These suggest useful ap-
over the FR-operator-based method. plications of the congruent transformation approach to the IQC

» Regarding the size of the finite-dimensional matrix, thenethod for various problems on systems and control [21].
size of F'(e#", +), corresponding to the lifting approach,
is 2n wheren is the sum of the order of the contin- V. NUMERICAL STUDY
uous-time generalized plant and that of the discrete-time
controller. On the other hand, the sizeofy, ), corre-
sponding to the FR-operator approaclgii®r 2m where
[ and m are the numbers of the rows and columns
Pss(s), respectively. Usually, or m is less tham. Also,
both F(c/#* ~) and F(y, ) can be computed from
the same exponentiation (32). Therefore, concerning t
computational load for the finite-dimensional part, the
FR-operator-based method has an advantage over th&lere, we compare the bisection algorithms based on the
lifting-based method. lifting approach and that based on the FR-operator approach

from the viewpoint of the computational load to compute the
singular value plot of a sampled-data system.

D. Possible Applications of the Properties of the Congruent Example 1: Consider the continuous-time plats) and the

In this section, we apply the two bisection algorithms and the
one-dimensional (1-D) search algorithm given in the preceding
osfectlons to compute the frequency response gain and singular
values of sampled-data systems.

ﬁ Comparison Between the Lifting-Based Method and the
R- -Operator-Based Method

Transformation continuous-time controlle®:.(s) given by
1

As seen in the preceding sections, the properties of the con- (s/a+ 1)1_[{(S/w7;)2 +2¢(s/wi) + 1}
gruent transformation are quite useful for the computation of s) = 1 i=0 (61)
the frequency response gain of sampled-data systems, and also 452
for the solution of the sampled-dakh.,, control problem. As a 1_[{(5/%‘)2 +2Gi(s/wi) + 1}
matter of fact, the congruent transformation approach developed s =2 ) _
in this paper can be applied to a wide class of problems on sygr (,y — 0:05135” +0.00424s" +0.0296s + 0.001 57 (62)
tems and control. For example, applying a similar technique, the 5% +0.6935% + 0.77952 + 0.293s + 0.0739

well-known bisection algorithm for computing tii&., norm of  \whereq = 4.84, ¢, = 0.02, ¢, = —0.4, ¢o = (3 = Ca = 0.02,
a continuous-time system [3] can be derived quite elementarily — 1 ), = 5.65, w, = 0.765, w3 = 1.41, wy = 1.85[2]. We

(i.e., purely algebraically, without resorting to the system-thegopmpute the singular value plot of the following sampled-data

retic notion such as inverse systems as in [3]). system.

This technique can also be applied to check, e.g., tljm(s): Pii(s) = Pia(s) = G(s), Par(s) = Pas(s) =
quadratic constraints for sampled-data systems. Here, we —G(s).
consider the condition ®(z):  discretization of,.(s) by the Tustin (bilinear) trans-

formation with sampling period = 8.
(CI—A1B]" [My Myp][(I-A)"1B Here, based on Theorem 2, we compute seven singular values
[ I } [Mﬁ M22:| [ I } <0 from the largest for each angular frequency, where the number
(VY ¢sit|¢] = 1) (59) of the angular frequencies is 200. To compute the initial upper
and lower bounds of the singular values, we use the method
given by [14]. The CPU used for the computation is Pentium
where A is a stability matrix, and\/y1, M5, and—Mos are, |1 300 MHz. The singular value plot of this example that is ac-
respectively, an Hermitian matrix, a compact operator, and earate up to the tolerance 0f01[dB] (which we can guarantee
invertible operator belonging t&", and they depend on the op-by employing a dB-based bisection method) is shown in Fig. 3,
eratorsC and D, in general. Such a quadratic constraint coland the computational load (CPU-time) is shown in Table 1. In
responds to the one regarding the Kalman—Yakubovich—Popbis table T, denotes the CPU-time for computing the singular
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Fig. 3. Singular value plot of Example 1. Fig. 4. A =0.2, e = 0.01, 0.001.

TABLE |

of the bisection algorithm (i.e., the part of the finite-dimensional
COMPUTATIONAL LOAD FOR THEBISECTION SEARCH (CPU-TIME [sec]) 9 ( P

matrix computation) becomes dominant and since the FR-oper-

CPU-time number of ator-based approach deals with a smaller size of matrix. On the

Lifting | FR-Op. | y-iterations contrary, when the difference between the initial upper bound
Tine | 116 2.45 . and lower bound is small, the lifting-based method is superior
gl 8 8 g* to the FR-operator-based method since the computational load
Tz 0.35 0.23 13 for the preparation part of the bisection algorithm (i.e., the part
T, | 055 0.34 21 of computing the singular values of infinite-dimensional oper-
Ty | 7.23 3.97 310 ators) becomes dominant and since the lifting-based approach
Tg | 36.81 | 20.50 1579 requires such computation only once.
Ty | 45.25 | 24.75 1891

*The initial upper and lower bounds for the first and second singular valu&s. Comparison with the Method of Yamamoto and
were close enough, so that no bisection loop was run. Khargonekar

Here, we compute the frequency response gain of the sam-
values of the infinite-dimensional operatbror P, (j¢), and pled-data system given in Example 1 with the method by Ya-
T; denotes the one for computing, with the bisection algorithmsamoto and Khargonekar [32]. More precisely, we use the con-
thesth largest singular value for all frequencies. For referencdition (44) instead of (43) for better numerical properties. For
within the range of Fig. 3, there are singular value®aft about simplicity, we decrease from 44 [dB] to 4 [dB] with a step
13.17, —1.2, —6.6, —12.7, —23.9, —34.7, and—44.2 [dB]. of A [dB], since we know from Fig. 3 that the frequency re-

Regarding7;,¢, the lifting-based method is superior to thesponse gain plot is actually within this range. The one-dimen-
FR-operator-based method. This is because the lifting-basgonal search is carried out at 33 angular frequencies, and, for
method computes the singular values of the infinite-dimensioredch frequency, if the magnitude of the determinant (44) be-
operatorD from the value ofP;(j¢) only at one fixed fre- comes less thanas we decreasg then the frequency response
guencyy (see Section 1lI-D), although the FR-operator-baseghin is regarded as equaltpwhere we take = 0.01 or0.001.
method needs the singular valuesif (j¢) for all frequen- Figs. 4 and 5 show the results far= 0.2 and forA = 0.002,
ciesy as stated in Section 1V-C. On the contrary, regardingspectively, where+" and “o” denote the plots for = 0.01
the CPU-timed’; for the main body of the bisection algorithm,ande = 0.001, respectively. Even though we refer to the com-
the FR-operator-based method is superior to the lifting-baspdtational load shown in Table Il since it is surely an impor-
method. This is because the size of the finite-dimensional ntant factor that may not be neglected, we stress that our primary
trix £'(¢, v) corresponding to the FR-operator-based methodtention here is to highlight the numerical reliability of our bi-
is smaller than that of'(¢/#", ~) corresponding to the lifting- section algorithm.
based method. Indeed, in this example, the siz€'@$, ~) is From Figs. 4 and 5, we can observe that we need to take a
two, and the size of'(¢’#", ) is 24. Table | shows that the sufficiently smalle to get accurate results, and we also need to
effect of the size of the finite-dimensional matrix becomes sigake a correspondingly smal as we make smaller. However,
nificant when the number of iteration increases. from Table IlI, we can see that we need a very long time if we

Summarizing the above, we can conclude that when the difiake both: andA small. How seriously this computation time
ference between the initial upper bound and lower bound gets longer entirely depends on how good the initial upper and
large, the FR-operator-based method is superior to the liftingwer bounds are, but it is generally true that this one-dimen-
based method since the computational load for the main baoslgnal search is time-consuming compared with the bisection
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TABLE I ) .

COMPUTATIONAL LOAD FOR THE ONE-DIMENSIONAL SEARCH proach requires to compute the singular values of the operator
(CPU-TimE [sec]) D, we gave a bisection algorithm for their computation as well,
again with the same technique. All these algorithms can be car-
A[dB] : Lo .
051 0.000 ried out easily with the state-space matrices of the sampled-data
=1 0.01 | 25.14 | 1958.23 system, and the effectiveness of the derived bisection algorithms
0.001 | 42.35 | 2001.20 is demonstrated through a numerical example.

Also, some important related issues were discussed such as

. _ i _the relationship to the existing 1-D search method [32]. Further-
algorithm. Indeed, for the same setting (i.e., the computatl%lore, the link between computing the frequency response gain

is carried out at 33 angular frequencies starting from the una 4 solving the sampled-dafé.., problem was made clearer.
form upper bound 44 dB and lower bound 4 dB, and is acCypiq contrasts with the apparently prevailing belief (see, e.g.,
rate up to the tolerance of 0.002 dB), the bisection search takggy ¢ the former is essentially much harder than the latter,
only 9.17 [sec]. Another important thing that we must focus hich comes from some difficulties stemming from the fact that
fife frequency response gain can be smaller tfiahwhile the

gain aty = 1096 = 0.25[rad/sec] is quite hard with this 1-D H..-norm is no smaller thafiD||.

search. The situation does not change so much by makingd
A small. This can be seen from Fig. 6, where the dependence
of the determinant of (44) versuds plotted for this frequency.
Since the slope of this curve at the zero-crossing point is very
steep, it is hard to detect that point by a discrete search.on  Proof of Lemma 1:Let Y = v/ — Z wherey > 0 and
Note that the slope there is steep because that point (i.e., the %e= Y. The spectral decomposition theorem assures that there
guency response gain at this frequency) is close to the disconfifists a complete orthonormal sgt;, ¢z, ...} consisting of
uous point of the plot (namely, a singular valugbi-recall the the eigenvectors dZ, such that for any: € M, Zz can be
arguments of Section IV-A and Fig. 2). This implies that it i§xpressed as

APPENDIX
PROOFS OFLEMMAS

generally hard to compute, with this one-dimensional search al- oo
gorithm, the frequency response gain at those frequencies where Zx = Z Ailzx, ei)e; (63)
the frequency response gain is close to a singular valdz of i=1

where); is the eigenvalue dZ corresponding te; [34, Corol-

lary 8.16]. We first show that the above spectral decomposi-
In this paper, we gave a complete bisection algorithm féien can be extended f& € . To this end, forr € M, let

computing the frequency response gain of sampled-data sy§-defineY,z = 377, (v — \i)(x, ¢;)e;, and showYz =

tems. To be more precise, we derived two different methodsnn—oo Y2, i.€.,

one with the lifting approach and the other with the FR-oper-

ator approach, but with the same technique. Namely, they are lim ||[(yI — Z)z — Z('V — )z, e)e;

both based on the properties of the infinite-dimensional con- "~ i=1

gruent transformation (i.e., the Schur complement argumedce{¢, } is a complete orthonormal set, we have

and the Sylvester law of inertia), and we focused on how to o

count up the numbers of the negative eigenvalues of self-adjoint I = Z<$’ eidei. (65)

operators. Furthermore, since the algorithm with the lifting ap-

VI. CONCLUSION

n

—0. (64)

i=1
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Hence, taking the limit. — oo in the triangle inequality

n

(v —Z)x — Z('y — i)z, e)e;

=1
= ||v <9? - Z@% Gz‘)@i) - <Z$ - Z Ai{z, Gz‘)@i) H
i=1 i=1
<yllz - Z(x, eieil| + ||Zx — Z Ai{z, ei)ei|| (66)
i=1 i=1

we obtain (64) by (63) and (65).
Now, we return to the proof of Lemma 1. Sinkeec N and
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Therefore, we have

(YXz, X2) = > Xz, ei){ei, Xz)
1=s5+1

= > wil(Xz e)? 20 (73)
1=s+1

This, together with (71), contradict§X*YXz, ») =
(YX~, Xz). Therefore,s > ¢. We can establisk < ¢in a
similar manner, and, hence, we obtaina- ¢.

Finally, we have to show that the multiplicity of the zero

X*YX € N by assumption, it follows from the above argugigenvalue is invariant under infinite-dimensional congruent

ments that there exist complete orthonormal $ets ¢z, ...}
and {f1, f2, ...} consisting of the eigenvectors & and
X*YX, respectively, such that for any € M, Yz and
X*Y Xz can be expressed respectively as

Yz = i i, eje; (67)
=1

X'YXz =Y vilz, fi)fi (68)
=1

whereu; is the eigenvalues oY corresponding te;, andy;
is the eigenvalue oX*YX corresponding tgf;. Let s and¢
be the numbers of the negative eigenvalue¥cind X*YX,

respectively. Here, we aim to show = ¢. To this end, sup-

transformations. However, this is immediate since we can
readily see that the dimension of the eigenspace corre-
sponding to the zero eigenvalue is invariant. This completes the
proof. Q.E.D.
Proof of Lemma 2:Suppose tha¥ = [& 5] =~ -

[
Q] where[2 5] W. Then

[§ plandX =[ pfig
X _[Q-SRSs* O] _ g—i—ﬁR_lﬁ* O
X*YX = [ 5 n == 5 R

Similarly, by lettingX = [}

e | Q @ _ Q 0
XYX‘[O R—S*Q*S}_’”_[O E+§*Q‘1§}

~Q7'S], we obtain

pose thats < ¢, and assume without loss of generality that

.y s < Owhile pg1; > 03¢ > 1), andey, ..., 11 < 0

By -

Therefore, from Lemma 1, the proof becomes complete if we

while 1,4; > 0( > 1).2 Also, consider the following linear Show thatQ € W, R € W, SR™'8" € W, and$"Q~'S €

equation forfas, ...a:]%:

(Xf1, e1) (Xft,e1) | Tar
: : =0, (89)
<Xf17 GS> <Xft7 65> [¢53 . )
Then, as an under-determined equation, there exists a nontrilfignd only if
solution(ay, ..., a;]” to (69). Letz = > °_, a; f;. Since
t
B oo\ ga 1<i<t
e fz>—<21 agfg,fz>—{0 P (70)
=
it follows from (68) that
oo 1

X*YXz = Z vilz, f)fi = Z v;a; f;.

i=1 i=1

Therefore, again from (70), we have

t t
(X*YX2z, z) = Z viai(fi, z) = Z vila;[* < 0. (71)
=1 =1
On the other hand, forl < i < s, (Xz,¢) =

Sio1 a;(Xf;, e;) = 0 by (69). This, together with (67),

implies
YXz = Z 1ilXz, e;)e; = Z 1i{Xz, eiye;.  (72)
i=1 i=st1

2Note that the convergences of (67) and (68) are unconditional, i.e., these
limits are invariant under reordering of the terms. See [22, Corollary 5.17.11].

W. However, this is immediate sin¢§; I%] € Wifand only
if Qe W, R €W, andS is compact. Q.E.D.
~ Proof of Lemma 3:By definition, Y > O if and only
if (Yx, z) > 0 for every nonzerac € M. However, since
(Yz, z) =372, wil{z, e;)|* by (67), we can see thaf > O
> 0(V ¢). This completes the proof.  Q.E.D.
Proof of Lemma 4:X = [ <. A]is similar to—X since
~X = J7tXJwhereJ = [, ] Therefore, the set of the
eigenvalues oK and that of- X coincide, including multiplic-
ities. By this, together with the assumption tkhts invertible,
we obtainN(X) = (0, n). Q.E.D.
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